如何使用 benchmark 进行性能分析
代码的性能是区分代码好坏的重要因素,你是否经常遇到你觉得这样写性能好,但当别人质疑你的时候你有没法给出好的证据?用go语言内置的基准测试工具becnmark给出证据吧!
稳定的测试环境
当我们尝试去优化代码的性能时,首先得知道当前的性能怎么样。Go 语言标准库内置的 testing 测试框架提供了基准测试(benchmark)的能力,能让我们很容易地对某一段代码进行性能测试。
性能测试受环境的影响很大,为了保证测试的可重复性,在进行性能测试时,尽可能地保持测试环境的稳定。
- 机器处于闲置状态,测试时不要执行其他任务,也不要和其他人共享硬件资源。
- 机器是否关闭了节能模式,一般笔记本会默认打开这个模式,测试时关闭。
- 避免使用虚拟机和云主机进行测试,一般情况下,为了尽可能地提高资源的利用率,虚拟机和云主机 CPU 和内存一般会超分配,超分机器的性能表现会非常地不稳定。
超分配是针对硬件资源来说的,商业上对应的就是云主机的超卖。虚拟化技术带来的最大直接收益是服务器整合,通过 CPU、内存、存储、网络的超分配(Overcommitment)技术,最大化服务器的使用率。例如,虚拟化的技能之一就是随心所欲的操控 CPU,例如一台 32U(物理核心)的服务器可能会创建出 128 个 1U(虚拟核心)的虚拟机,当物理服务器资源闲置时,CPU 超分配一般不会对虚拟机上的业务产生明显影响,但如果大部分虚拟机都处于繁忙状态时,那么各个虚拟机为了获得物理服务器的资源就要相互竞争,相互等待。Linux 上专门有一个指标,Steal Time(st),用来衡量被虚拟机监视器(Hypervisor)偷去给其它虚拟机使用的 CPU 时间所占的比例。
benchmark 的使用
一个简单的例子
Go 语言标准库内置了支持 benchmark 的 testing
库,接下来看一个简单的例子:
使用 go mod init example
初始化一个模块,新增 fib.go
文件,实现函数 fib
,用于计算第 N 个菲波那切数。
1 | // fib.go |
接下来,我们在 fib_test.go
中实现一个 benchmark 用例:
1 | // fib_test.go |
- benchmark 和普通的单元测试用例一样,都位于
_test.go
文件中。 - 函数名以
Benchmark
开头,参数是b *testing.B
。和普通的单元测试用例很像,单元测试函数名以Test
开头,参数是t *testing.T
。
运行用例
go test <module name>/<package name>
用来运行某个 package 内的所有测试用例。
- 运行当前 package 内的用例:
go test example
或go test .
- 运行子 package 内的用例:
go test example/<package name>
或go test ./<package name>
- 如果想递归测试当前目录下的所有的 package:
go test ./...
或go test example/...
。
go test
命令默认不运行 benchmark 用例的,如果我们想运行 benchmark 用例,则需要加上 -bench
参数。例如:
1 | $ go test -bench . |
-bench
参数支持传入一个正则表达式,匹配到的用例才会得到执行,例如,只运行以 Fib
结尾的 benchmark 用例:
1 | $ go test -bench='Fib$' . |
benchmark 是如何工作的
benchmark 用例的参数 b *testing.B
,有个属性 b.N
表示这个用例需要运行的次数。b.N
对于每个用例都是不一样的。
那这个值是如何决定的呢?b.N
从 1 开始,如果该用例能够在 1s 内完成,b.N
的值便会增加,再次执行。b.N
的值大概以 1, 2, 3, 5, 10, 20, 30, 50, 100 这样的序列递增,越到后面,增加得越快。我们仔细观察上述例子的输出:
1 | BenchmarkFib-8 202 5980669 ns/op |
BenchmarkFib-8 中的 -8
即 GOMAXPROCS
,默认等于 CPU 核数。可以通过 -cpu
参数改变 GOMAXPROCS
,-cpu
支持传入一个列表作为参数,例如:
1 | $ go test -bench='Fib$' -cpu=2,4 . |
在这个例子中,改变 CPU 的核数对结果几乎没有影响,因为这个 Fib 的调用是串行的。
202
和 5980669 ns/op
表示用例执行了 202 次,每次花费约 0.006s。总耗时比 1s 略多。
提升准确度
对于性能测试来说,提升测试准确度的一个重要手段就是增加测试的次数。我们可以使用 -benchtime
和 -count
两个参数达到这个目的。
benchmark 的默认时间是 1s,那么我们可以使用 -benchtime
指定为 5s。例如:
1 | $ go test -bench='Fib$' -benchtime=5s . |
实际执行的时间是 6.5s,比 benchtime 的 5s 要长,测试用例编译、执行、销毁等是需要时间的。
将 -benchtime
设置为 5s,用例执行次数也变成了原来的 5倍,每次函数调用时间仍为 0.6s,几乎没有变化。
-benchtime
的值除了是时间外,还可以是具体的次数。例如,执行 30 次可以用 -benchtime=30x
:
1 | $ go test -bench='Fib$' -benchtime=50x . |
调用 50 次 fib(30)
,仅花费了 0.319s。
-count
参数可以用来设置 benchmark 的轮数。例如,进行 3 轮 benchmark。
1 | $ go test -bench='Fib$' -benchtime=5s -count=3 . |
内存分配情况
-benchmem
参数可以度量内存分配的次数。内存分配次数也性能也是息息相关的,例如不合理的切片容量,将导致内存重新分配,带来不必要的开销。
在下面的例子中,generateWithCap
和 generate
的作用是一致的,生成一组长度为 n 的随机序列。唯一的不同在于,generateWithCap
创建切片时,将切片的容量(capacity)设置为 n,这样切片就会一次性申请 n 个整数所需的内存。
1 | // generate_test.go |
运行该用例的结果是:
1 | go test -bench='Generate' . |
可以看到生成 100w 个数字的随机序列,GenerateWithCap
的耗时比 Generate
少 20%。
我们可以使用 -benchmem
参数看到内存分配的情况:
1 | goos: darwin |
Generate
分配的内存是 GenerateWithCap
的 6 倍,设置了切片容量,内存只分配一次,而不设置切片容量,内存分配了 40 次。
测试不同的输入
不同的函数复杂度不同,O(1),O(n),O(n^2) 等,利用 benchmark 验证复杂度一个简单的方式,是构造不同的输入。对刚才的 benchmark 稍作改造,便能够达到目的。
1 | // generate_test.go |
这里,我们实现一个辅助函数 benchmarkGenerate
允许传入参数 i,并构造了 4 个不同输入的 benchmark 用例。运行结果如下:
1 | $ go test -bench . |
通过测试结果可以发现,输入变为原来的 10 倍,函数每次调用的时长也差不多是原来的 10 倍,这说明复杂度是线性的。
benchmark 注意事项
ResetTimer
如果在 benchmark 开始前,需要一些准备工作,如果准备工作比较耗时,则需要将这部分代码的耗时忽略掉。比如下面的例子:
1 | func BenchmarkFib(b *testing.B) { |
运行结果是:
1 | $ go test -bench='Fib$' -benchtime=50x . |
50次调用,每次调用约 0.66s,是之前的 0.06s 的 11 倍。究其原因,受到了耗时准备任务的干扰。我们需要用 ResetTimer
屏蔽掉:
1 | func BenchmarkFib(b *testing.B) { |
运行结果恢复正常,每次调用约 0.06s。
1 | $ go test -bench='Fib$' -benchtime=50x . |
StopTimer & StartTimer
还有一种情况,每次函数调用前后需要一些准备工作和清理工作,我们可以使用 StopTimer
暂停计时以及使用 StartTimer
开始计时。
例如,如果测试一个冒泡函数的性能,每次调用冒泡函数前,需要随机生成一个数字序列,这是非常耗时的操作,这种场景下,就需要使用 StopTimer
和 StartTimer
避免将这部分时间计算在内。
例如:
1 | // sort_test.go |
执行该用例,每次排序耗时约 0.1s。
1 | $ go test -bench='Sort$' . |