Mysql 事务(mvcc+间隙锁)

事务隔离

提到事务,你肯定会想到 ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性),今天我们就来说说其中 I,也就是“隔离性”。

当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。

在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。下面我逐一为你解释:

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。

在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。

在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。

这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;

而“串行化”隔离级别下直接用加锁的方式来避免并行访问。

事务隔离的实现

在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。

假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。

当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到

mysql_affairs

当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到。

回滚日志什么时候删除:

就是当系统里没有比这个回滚日志更早的 read-view 的时候。

所以尽量不要有长事务,长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。

视图

在 MySQL 里,有两个“视图”的概念:

  • 一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。
  • 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。

它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。

“快照”在 MVCC 里是怎么工作的?

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。

  1. 事务ID全局递增

InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。

  1. 每行数据有多个版本

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。

也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

mysql_mvcc

图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。

  1. 语句更新会生成 undo log(回滚日志)

Undolog

图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。

  1. 维护事务启动时的活跃事务数组来确定当前事务可见版本

InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。

数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。这个视图数组把所有的 row trx_id 分成了几种不同的情况。

mysql_mvcc2
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  • 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  • 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  • 如果落在黄色部分,那就包括两种情况

​ a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;

​ b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。

注意点

  1. 当要去更新数据的时候,就不能再在历史版本上更新了,否则事务更新就丢失了。所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

  2. 其实,除了 update 语句外,select 语句如果加锁,也是当前读。如果把事务的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也就变成了当前读。

  3. 当前事务的更新对于当前事务的查询试图时可见的

  4. 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;对于读提交,查询只承认在语句启动前就已经提交完成的数据;

幻读

下面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?

1
2
3
begin;
select * from t where d=5 for update;
commit;

比较好理解的是,这个语句会命中 d=5 的这一行,对应的主键 id=5,因此在 select 语句执行完成后,id=5 这一行会加一个写锁,而且由于两阶段锁协议,这个写锁会在执行 commit 语句的时候释放。

由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?

接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。

如果只在 id=5 这一行加锁,而其他行的不加锁的话,会怎么样。

mysql_huandu_exp

可以看到,session A 里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的 SQL 语句相同,都是 select * from t where d=5 for update。这个语句的意思你应该很清楚了,查所有 d=5 的行,而且使用的是当前读,并且加上写锁。现在,我们来看一下这三条 SQL 语句,分别会返回什么结果。

  • Q1 只返回 id=5 这一行;
  • 在 T2 时刻,session B 把 id=0 这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id=0 和 id=5 这两行;
  • 在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id=0、id=1 和 id=5 的这三行。

其中,Q3 读到 id=1 这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。这里,我需要对“幻读”做一个说明:

  • 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在“当前读”下才会出现。
  • 上面 session B 的修改结果,被 session A 之后的 select 语句用“当前读”看到,不能称为幻读。幻读仅专指“新插入的行”。

幻读有什么问题?

首先是语义上的。

session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。而实际上,这个语义被破坏了

如果现在这样看感觉还不明显的话,我再往 session B 和 session C 里面分别加一条 SQL 语句,你再看看会出现什么现象。

mysql_huandu_question

session B 的第二条语句 update t set c=5 where id=0,语义是“我把 id=0、d=5 这一行的 c 值,改成了 5。

由于在 T1 时刻,session A 还只是给 id=5 这一行加了行锁, 并没有给 id=0 这行加上锁。因此,session B 在 T2 时刻,是可以执行这两条 update 语句的。这样,就破坏了 session A 里 Q1 语句要锁住所有 d=5 的行的加锁声明。

session C 也是一样的道理,对 id=1 这一行的修改,也是破坏了 Q1 的加锁声明。

其次,是数据一致性的问题。

我们知道,锁的设计是为了保证数据的一致性。而这个一致性,不止是数据库内部数据状态在此刻的一致性,还包含了数据和日志在逻辑上的一致性。

为了说明这个问题,我给 session A 在 T1 时刻再加一个更新语句,即:update t set d=100 where d=5。

update 的加锁语义和 select …for update 是一致的,所以这时候加上这条 update 语句也很合理。session A 声明说“要给 d=5 的语句加上锁”,就是为了要更新数据,新加的这条 update 语句就是把它认为加上了锁的这一行的 d 值修改成了 100。

经过 T1 时刻,id=5 这一行变成 (5,5,100),当然这个结果最终是在 T6 时刻正式提交的 ;

经过 T2 时刻,id=0 这一行变成 (0,5,5);

经过 T4 时刻,表里面多了一行 (1,5,5);

其他行跟这个执行序列无关,保持不变。

这样看,这些数据也没啥问题,但是我们再来看看这时候 binlog 里面的内容。

T2 时刻,session B 事务提交,写入了两条语句;

T4 时刻,session C 事务提交,写入了两条语句;

T6 时刻,session A 事务提交,写入了 update t set d=100 where d=5 这条语句。

1
2
3
4
5
6
7
update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/*所有d=5的行,d改成100*/

好,你应该看出问题了。这个语句序列,不论是拿到备库去执行,还是以后用 binlog 来克隆一个库,这三行的结果,都变成了 (0,5,100)、(1,5,100) 和 (5,5,100)。

也就是说,id=0 和 id=1 这两行,发生了数据不一致。这个问题很严重,是不行的。

如何解决幻读?

为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。

注意:间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系

间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。

这个 supremum 从哪儿来的呢?这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间

间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。

1
2
3
4
5
6
7
8
9
begin;
select * from t where id=N for update;

/*如果行不存在*/
insert into t values(N,N,N);
/*如果行存在*/
update t set d=N set id=N;

commit;

这个同学碰到的现象是,这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update 锁起来,已经是最严格的模式了,怎么还会有死锁呢?

其实都不需要用到后面的 update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:

  • session A 执行 select … for update 语句,由于 id=9 这一行并不存在,因此会加上间隙锁 (5,10);
  • session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
  • session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
  • session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。

至此,两个 session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。

,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。

next-key lock 如何加

加锁规则里面,包含了两个“原则”、两个“优化”和一个“bug”。

原则 1:加锁的基本单位是 next-key lock。希望你还记得,next-key lock 是前开后闭区间。

原则 2:查找过程中访问到的对象才会加锁。

优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。

优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。

一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。