Mysql 临时表和group by
临时表
临时表的特点
- 建表语法是 create temporary table …。
- 一个临时表只能被创建它的 session 访问,对其他线程不可见。所以,图中 session A 创建的临时表 t,对于 session B 就是不可见的。
- 临时表可以与普通表同名。
- session A 内有同名的临时表和普通表的时候,show create 语句,以及增删改查语句访问的是临时表。
- show tables 命令不显示临时表。
由于临时表只能被创建它的 session 访问,所以在这个 session 结束的时候,会自动删除临时表。也正是由于这个特性,临时表就特别适合我们文章开头的 join 优化这种场景。为什么呢?
原因主要包括以下两个方面:
不同 session 的临时表是可以重名的,如果有多个 session 同时执行 join 优化,不需要担心表名重复导致建表失败的问题。
不需要担心数据删除问题。如果使用普通表,在流程执行过程中客户端发生了异常断开,或者数据库发生异常重启,还需要专门来清理中间过程中生成的数据表。而临时表由于会自动回收,所以不需要这个额外的操作。
临时表的应用
由于不用担心线程之间的重名冲突,临时表经常会被用在复杂查询的优化过程中。其中,分库分表系统的跨库查询就是一个典型的使用场景。
一般分库分表的场景,就是要把一个逻辑上的大表分散到不同的数据库实例上。比如。将一个大表 ht,按照字段 f,拆分成 1024 个分表,然后分布到 32 个数据库实例上。如下图所示:
一般情况下,这种分库分表系统都有一个中间层 proxy。不过,也有一些方案会让客户端直接连接数据库,也就是没有 proxy 这一层。
在这个架构中,分区 key 的选择是以“减少跨库和跨表查询”为依据的。如果大部分的语句都会包含 f 的等值条件,那么就要用 f 做分区键。这样,在 proxy 这一层解析完 SQL 语句以后,就能确定将这条语句路由到哪个分表做查询。
比如下面这条语句:
1 | select v from ht where f=N; |
这时,我们就可以通过分表规则(比如,N%1024) 来确认需要的数据被放在了哪个分表上。这种语句只需要访问一个分表,是分库分表方案最欢迎的语句形式了。
但是,如果这个表上还有另外一个索引 k,并且查询语句是这样的:
1 | select v from ht where k >= M order by t_modified desc limit 100; |
这时候,由于查询条件里面没有用到分区字段 f,只能到所有的分区中去查找满足条件的所有行,然后统一做 order by 的操作。这种情况下,有两种比较常用的思路。
第一种思路是,在 proxy 层的进程代码中实现排序。
这种方式的优势是处理速度快,拿到分库的数据以后,直接在内存中参与计算。不过,这个方案的缺点也比较明显:
- 需要的开发工作量比较大。我们举例的这条语句还算是比较简单的,如果涉及到复杂的操作,比如 group by,甚至 join 这样的操作,对中间层的开发能力要求比较高;
- 对 proxy 端的压力比较大,尤其是很容易出现内存不够用和 CPU 瓶颈的问题。
另一种思路就是,把各个分库拿到的数据,汇总到一个 MySQL 实例的一个表中,然后在这个汇总实例上做逻辑操作。
比如上面这条语句,执行流程可以类似这样:
在汇总库上创建一个临时表 temp_ht,表里包含三个字段 v、k、t_modified;
在各个分库上执行
1 | select v,k,t_modified from ht_x where k >= M order by t_modified desc limit 100; |
把分库执行的结果插入到 temp_ht 表中;
执行
1 | select v from temp_ht order by t_modified desc limit 100; |
在实践中,我们往往会发现每个分库的计算量都不饱和,所以会直接把临时表 temp_ht 放到 32 个分库中的某一个上。这时的查询逻辑与图 3 类似,你可以自己再思考一下具体的流程。
为什么临时表可以重名?
你可能会问,不同线程可以创建同名的临时表,这是怎么做到的呢?接下来,我们就看一下这个问题。
我们在执行
1 | create temporary table temp_t(id int primary key)engine=innodb; |
这个语句的时候,MySQL 要给这个 InnoDB 表创建一个 frm 文件保存表结构定义,还要有地方保存表数据。
这个 frm 文件放在临时文件目录下,文件名的后缀是.frm,前缀是“#sql{进程 id}{线程 id} 序列号”。你可以使用 select @@tmpdir 命令,来显示实例的临时文件目录。
而关于表中数据的存放方式,在不同的 MySQL 版本中有着不同的处理方式:
- 在 5.6 以及之前的版本里,MySQL 会在临时文件目录下创建一个相同前缀、以.ibd 为后缀的文件,用来存放数据文件;
- 而从 5.7 版本开始,MySQL 引入了一个临时文件表空间,专门用来存放临时文件的数据。因此,我们就不需要再创建 ibd 文件了。
从文件名的前缀规则,我们可以看到,其实创建一个叫作 t1 的 InnoDB 临时表,MySQL 在存储上认为我们创建的表名跟普通表 t1 是不同的,因此同一个库下面已经有普通表 t1 的情况下,还是可以再创建一个临时表 t1 的。
在实现上,每个线程都维护了自己的临时表链表。这样每次 session 内操作表的时候,先遍历链表,检查是否有这个名字的临时表,如果有就优先操作临时表,如果没有再操作普通表;
在 session 结束的时候,对链表里的每个临时表,执行 “DROP TEMPORARY TABLE + 表名”操作。这时候你会发现,binlog 中也记录了 DROP TEMPORARY TABLE 这条命令。你一定会觉得奇怪,临时表只在线程内自己可以访问,为什么需要写到 binlog 里面?
临时表和主备复制
既然写 binlog,就意味着备库需要。
你可以设想一下,在主库上执行下面这个语句序列:
1 | create table t_normal(id int primary key, c int)engine=innodb;/*Q1*/ |
如果关于临时表的操作都不记录,那么在备库就只有 create table t_normal 表和 insert into t_normal select * from temp_t 这两个语句的 binlog 日志,备库在执行到 insert into t_normal 的时候,就会报错“表 temp_t 不存在”。
确实是这样。如果当前的 binlog_format=row,那么跟临时表有关的语句,就不会记录到 binlog 里。也就是说,只在 binlog_format=statment/mixed 的时候,binlog 中才会记录临时表的操作。
这种情况下,创建临时表的语句会传到备库执行,因此备库的同步线程就会创建这个临时表。主库在线程退出的时候,会自动删除临时表,但是备库同步线程是持续在运行的。所以,这时候我们就需要在主库上再写一个 DROP TEMPORARY TABLE 传给备库执行。
什么时候会使用内部临时表?
union
我们执行下面这条语句:
1 | (select 1000 as f) union (select id from t1 order by id desc limit 2); |
这条语句用到了 union,它的语义是,取这两个子查询结果的并集。并集的意思就是这两个集合加起来,重复的行只保留一行。下图是这个语句的 explain 结果
可以看到:
第二行的 key=PRIMARY,说明第二个子句用到了索引 id。
第三行的 Extra 字段,表示在对子查询的结果集做 union 的时候,使用了临时表 (Using temporary)。
这个语句的执行流程是这样的:
创建一个内存临时表,这个临时表只有一个整型字段 f,并且 f 是主键字段。
执行第一个子查询,得到 1000 这个值,并存入临时表中。
执行第二个子查询:
拿到第一行 id=1000,试图插入临时表中。但由于 1000 这个值已经存在于临时表了,违反了唯一性约束,所以插入失败,然后继续执行;
取到第二行 id=999,插入临时表成功。
从临时表中按行取出数据,返回结果,并删除临时表,结果中包含两行数据分别是 1000 和 999。
可以看到,这里的内存临时表起到了暂存数据的作用,而且计算过程还用上了临时表主键 id 的唯一性约束,实现了 union 的语义。
顺便提一下,如果把上面这个语句中的 union 改成 union all 的话,就没有了“去重”的语义。这样执行的时候,就依次执行子查询,得到的结果直接作为结果集的一部分,发给客户端。因此也就不需要临时表了。
group by 执行流程
另外一个常见的使用临时表的例子是 group by,我们来看一下这个语句:
1 | select id%10 as m, count(*) as c from t1 group by m; |
这个语句的逻辑是把表 t1 里的数据,按照 id%10 进行分组统计,并按照 m 的结果排序后输出。它的 explain 结果如下:
在 Extra 字段里面,我们可以看到三个信息:
- Using index,表示这个语句使用了覆盖索引,选择了索引 a,不需要回表;
- Using temporary,表示使用了临时表;
- Using filesort,表示需要排序。
这个语句的执行流程是这样的:
- 创建内存临时表,表里有两个字段 m 和 c,主键是 m;
- 扫描表 t1 的索引 a,依次取出叶子节点上的 id 值,计算 id%10 的结果,记为 x;
- 如果临时表中没有主键为 x 的行,就插入一个记录 (x,1);
- 如果表中有主键为 x 的行,就将 x 这一行的 c 值加 1;
- 遍历完成后,再根据字段 m 做排序,得到结果集返回给客户端。
如果你的需求并不需要对结果进行排序,那你可以在 SQL 语句末尾增加 order by null,也就是改成:
1 | select id%10 as m, count(*) as c from t1 group by m order by null; |
这个例子里由于临时表只有 10 行,内存可以放得下,因此全程只使用了内存临时表。但是,内存临时表的大小是有限制的,参数 tmp_table_size 就是控制这个内存大小的,默认是 16M。
如果我执行下面这个语句序列:
1 | set tmp_table_size=1024; |
把内存临时表的大小限制为最大 1024 字节,并把语句改成 id % 100,这样返回结果里有 100 行数据。但是,这时的内存临时表大小不够存下这 100 行数据,也就是说,执行过程中会发现内存临时表大小到达了上限(1024 字节)。
那么,这时候就会把内存临时表转成磁盘临时表,磁盘临时表默认使用的引擎是 InnoDB。如果这个表 t1 的数据量很大,很可能这个查询需要的磁盘临时表就会占用大量的磁盘空间。
group by 优化方法 – 索引
可以看到,不论是使用内存临时表还是磁盘临时表,group by 逻辑都需要构造一个带唯一索引的表,执行代价都是比较高的。如果表的数据量比较大,上面这个 group by 语句执行起来就会很慢,我们有什么优化的方法呢?
group by 的语义逻辑,是统计不同的值出现的个数。但是,由于每一行的 id%100 的结果是无序的,所以我们就需要有一个临时表,来记录并统计结果。
那么,如果扫描过程中可以保证出现的数据是有序的,是不是就简单了呢?
在 MySQL 5.7 版本支持了 generated column 机制,用来实现列数据的关联更新。你可以用下面的方法创建一个列 z,然后在 z 列上创建一个索引(如果是 MySQL 5.6 及之前的版本,你也可以创建普通列和索引,来解决这个问题)。alter table t1 add column z int generated always as(id % 100), add index(z);
1 | alter table t1 add column z int generated always as(id % 100), add index(z); |
这样,索引 z 上的数据就是类似图 10 这样有序的了。上面的 group by 语句就可以改成:
1 | select z, count(*) as c from t1 group by z; |
优化后的 group by 语句的 explain 结果,如下图所示:
从 Extra 字段可以看到,这个语句的执行不再需要临时表,也不需要排序了。
group by 优化方法 – 直接排序
所以,如果可以通过加索引来完成 group by 逻辑就再好不过了。但是,如果碰上不适合创建索引的场景,我们还是要老老实实做排序的。那么,这时候的 group by 要怎么优化呢?
如果我们明明知道,一个 group by 语句中需要放到临时表上的数据量特别大,却还是要按照“先放到内存临时表,插入一部分数据后,发现内存临时表不够用了再转成磁盘临时表”,看上去就有点儿傻。
那么,我们就会想了,MySQL 有没有让我们直接走磁盘临时表的方法呢?
答案是,有的。在 group by 语句中加入 SQL_BIG_RESULT 这个提示(hint),就可以告诉优化器:这个语句涉及的数据量很大,请直接用磁盘临时表。
MySQL 的优化器一看,磁盘临时表是 B+ 树存储,存储效率不如数组来得高。所以,既然你告诉我数据量很大,那从磁盘空间考虑,还是直接用数组来存吧。
因此,下面这个语句
1 | select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group by m; |
的执行流程就是这样的:
- 初始化 sort_buffer,确定放入一个整型字段,记为 m;
- 扫描表 t1 的索引 a,依次取出里面的 id 值, 将 id%100 的值存入 sort_buffer 中;
- 扫描完成后,对 sort_buffer 的字段 m 做排序(如果 sort_buffer 内存不够用,就会利用磁盘临时文件辅助排序);
- 排序完成后,就得到了一个有序数组。