Mysql 如何实现高可用
主备一致
客户端的读写都直接访问节点 A,而节点 B 是 A 的备库,只是将 A 的更新都同步过来,到本地执行。这样可以保持节点 B 和 A 的数据是相同的。
接下来,我们再看看节点 A 到 B 这条线的内部流程是什么样的。图 2 中画出的就是一个 update 语句在节点 A 执行,然后同步到节点 B 的完整流程图。
备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。一个事务日志同步的完整过程是这样的:
- 在备库 B 上通过 change master 命令,设置主库 A 的 IP、端口、用户名、密码,以及要从哪个位置开始请求 binlog,这个位置包含文件名和日志偏移量。
- 在备库 B 上执行 start slave 命令,这时候备库会启动两个线程,就是图中的 io_thread 和 sql_thread。其中 io_thread 负责与主库建立连接。
- 主库 A 校验完用户名、密码后,开始按照备库 B 传过来的位置,从本地读取 binlog,发给 B。
- 备库 B 拿到 binlog 后,写到本地文件,称为中转日志(relay log)。
- sql_thread 读取中转日志,解析出日志里的命令,并执行。
这里需要说明,后来由于多线程复制方案的引入,sql_thread 演化成为了多个线程,跟我们今天要介绍的原理没有直接关系,暂且不展开。
分析完了这个长连接的逻辑,我们再来看一个问题:binlog 里面到底是什么内容,为什么备库拿过去可以直接执行。
binlog 的三种格式对比
statement
主要是记录数据执行的逻辑语句
row
会记录处理数据的行的所有字段值,并记录对某一行进行的行为。更新还会记录更新前的一条数据
Mixed
因为有些 statement 格式的 binlog 可能会导致主备不一致,所以要使用 row 格式。但 row 格式的缺点是,很占空间。比如你用一个 delete 语句删掉 10 万行数据,用 statement 的话就是一个 SQL 语句被记录到 binlog 中,占用几十个字节的空间。但如果用 row 格式的 binlog,就要把这 10 万条记录都写到 binlog 中。这样做,不仅会占用更大的空间,同时写 binlog 也要耗费 IO 资源,影响执行速度。
所以,MySQL 就取了个折中方案,也就是有了 mixed 格式的 binlog。mixed 格式的意思是,MySQL 自己会判断这条 SQL 语句是否可能引起主备不一致,如果有可能,就用 row 格式,否则就用 statement 格式。
也就是说,mixed 格式可以利用 statment 格式的优点,同时又避免了数据不一致的风险。
更推荐使用row
即使我执行的是 delete 语句,row 格式的 binlog 也会把被删掉的行的整行信息保存起来。所以,如果你在执行完一条 delete 语句以后,发现删错数据了,可以直接把 binlog 中记录的 delete 语句转成 insert,把被错删的数据插入回去就可以恢复了。
如果你是执行错了 insert 语句呢?那就更直接了。row 格式下,insert 语句的 binlog 里会记录所有的字段信息,这些信息可以用来精确定位刚刚被插入的那一行。这时,你直接把 insert 语句转成 delete 语句,删除掉这被误插入的一行数据就可以了。
如果执行的是 update 语句的话,binlog 里面会记录修改前整行的数据和修改后的整行数据。所以,如果你误执行了 update 语句的话,只需要把这个 event 前后的两行信息对调一下,再去数据库里面执行,就能恢复这个更新操作了。
其实,由 delete、insert 或者 update 语句导致的数据操作错误,需要恢复到操作之前状态的情况,也时有发生。MariaDB 的Flashback工具就是基于上面介绍的原理来回滚数据的。
用 binlog 来恢复数据的标准做法是,用 mysqlbinlog 工具解析出来,然后把解析结果整个发给 MySQL 执行。类似下面的命令:
1 | mysqlbinlog master.000001 --start-position=2738 --stop-position=2973 | mysql -h127.0.0.1 -P13000 -u$user -p$pwd; |
循环复制问题
我们可以认为正常情况下主备的数据是一致的。也就是说,图 1 中 A、B 两个节点的内容是一致的。其实,图 1 中我画的是 M-S 结构,但实际生产上使用比较多的是双 M 结构,也就是图 9 所示的主备切换流程。
双 M 结构还有一个问题需要解决。
业务逻辑在节点 A 上更新了一条语句,然后再把生成的 binlog 发给节点 B,节点 B 执行完这条更新语句后也会生成 binlog。(我建议你把参数 log_slave_updates 设置为 on,表示备库执行 relay log 后生成 binlog)。
那么,如果节点 A 同时是节点 B 的备库,相当于又把节点 B 新生成的 binlog 拿过来执行了一次,然后节点 A 和 B 间,会不断地循环执行这个更新语句,也就是循环复制了。这个要怎么解决呢?
我们可以用下面的逻辑,来解决两个节点间的循环复制的问题:
- 规定两个库的 server id 必须不同,如果相同,则它们之间不能设定为主备关系;
- 一个备库接到 binlog 并在重放的过程中,生成与原 binlog 的 server id 相同的新的 binlog;
- 每个库在收到从自己的主库发过来的日志后,先判断 server id,如果跟自己的相同,表示这个日志是自己生成的,就直接丢弃这个日志。
按照这个逻辑,如果我们设置了双 M 结构,日志的执行流就会变成这样:
从节点 A 更新的事务,binlog 里面记的都是 A 的 server id;
传到节点 B 执行一次以后,节点 B 生成的 binlog 的 server id 也是 A 的 server id;
再传回给节点 A,A 判断到这个 server id 与自己的相同,就不会再处理这个日志。所以,死循环在这里就断掉了。
高可用
MySQL 要提供高可用能力,只有最终一致性是不够的
主备延迟
主备切换可能是一个主动运维动作,比如软件升级、主库所在机器按计划下线等,也可能是被动操作,比如主库所在机器掉电。
在介绍主动切换流程的详细步骤之前,我要先跟你说明一个概念,即“同步延迟”。与数据同步有关的时间点主要包括以下三个:
- 主库 A 执行完成一个事务,写入 binlog,我们把这个时刻记为 T1;
- 之后传给备库 B,我们把备库 B 接收完这个 binlog 的时刻记为 T2;
- 备库 B 执行完成这个事务,我们把这个时刻记为 T3。
所谓主备延迟,就是同一个事务,在备库执行完成的时间和主库执行完成的时间之间的差值,也就是 T3-T1。
你可以在备库上执行 show slave status 命令,它的返回结果里面会显示 seconds_behind_master,用于表示当前备库延迟了多少秒。
seconds_behind_master 的计算方法是这样的:
每个事务的 binlog 里面都有一个时间字段,用于记录主库上写入的时间;
备库取出当前正在执行的事务的时间字段的值,计算它与当前系统时间的差值,得到 seconds_behind_master。
如果主备库机器的系统时间设置不一致,会不会导致主备延迟的值不准?其实不会的。因为,备库连接到主库的时候,会通过执行 SELECT UNIX_TIMESTAMP() 函数来获得当前主库的系统时间。如果这时候发现主库的系统时间与自己不一致,备库在执行 seconds_behind_master 计算的时候会自动扣掉这个差值。
在网络正常的时候,日志从主库传给备库所需的时间是很短的,即 T2-T1 的值是非常小的。也就是说,网络正常情况下,主备延迟的主要来源是备库接收完 binlog 和执行完这个事务之间的时间差。
所以说,主备延迟最直接的表现是,备库消费中转日志(relay log)的速度,比主库生产 binlog 的速度要慢。接下来,我就和你一起分析下,这可能是由哪些原因导致的。
主备延迟的来源
首先,有些部署条件下,备库所在机器的性能要比主库所在的机器性能差。
一般情况下,有人这么部署时的想法是,反正备库没有请求,所以可以用差一点儿的机器。或者,他们会把 20 个主库放在 4 台机器上,而把备库集中在一台机器上。
其实我们都知道,更新请求对 IOPS 的压力,在主库和备库上是无差别的。所以,做这种部署时,一般都会将备库设置为“非双 1”的模式。
但实际上,更新过程中也会触发大量的读操作。所以,当备库主机上的多个备库都在争抢资源的时候,就可能会导致主备延迟了。
做了对称部署以后,还可能会有延迟。这是为什么呢?
这就是第二种常见的可能了,即备库的压力大。一般的想法是,主库既然提供了写能力,那么备库可以提供一些读能力。或者一些运营后台需要的分析语句,不能影响正常业务,所以只能在备库上跑。
我真就见过不少这样的情况。由于主库直接影响业务,大家使用起来会比较克制,反而忽视了备库的压力控制。结果就是,备库上的查询耗费了大量的 CPU 资源,影响了同步速度,造成主备延迟。
这种情况,我们一般可以这么处理:
- 一主多从。除了备库外,可以多接几个从库,让这些从库来分担读的压力。
- 通过 binlog 输出到外部系统,比如 Hadoop 这类系统,让外部系统提供统计类查询的能力。
其中,一主多从的方式大都会被采用。因为作为数据库系统,还必须保证有定期全量备份的能力。而从库,就很适合用来做备份。
采用了一主多从,保证备库的压力不会超过主库,还有什么情况可能导致主备延迟吗?
这就是第三种可能了,即大事务。
大事务这种情况很好理解。因为主库上必须等事务执行完成才会写入 binlog,再传给备库。所以,如果一个主库上的语句执行 10 分钟,那这个事务很可能就会导致从库延迟 10 分钟。
不知道你所在公司的 DBA 有没有跟你这么说过:不要一次性地用 delete 语句删除太多数据。其实,这就是一个典型的大事务场景。
要控制每个事务删除的数据量,分成多次删除。
另一种典型的大事务场景,就是大表 DDL。
这个场景处理方案就是,计划内的 DDL,建议使用 gh-ost 方案(online ddl)
可靠性优先策略
在图 1 的双 M 结构下,从状态 1 到状态 2 的详细过程是这样的:
- 判断备库 B 现在的 seconds_behind_master,如果小于某个值(比如 5 秒)继续下一步,否则持续重试这一步;
- 把主库 A 改成只读状态,即把 readonly 设置为 true;
- 判断备库 B 的 seconds_behind_master 的值,直到这个值变成 0 为止;
- 把备库 B 改成可读写状态,也就是把 readonly 设置为 false;
- 把业务请求切到备库 B。
这个切换流程,一般是由专门的 HA 系统来完成的,我们暂时称之为可靠性优先流程。
可以看到,这个切换流程中是有不可用时间的。因为在步骤 2 之后,主库 A 和备库 B 都处于 readonly 状态,也就是说这时系统处于不可写状态,直到步骤 5 完成后才能恢复。
在这个不可用状态中,比较耗费时间的是步骤 3,可能需要耗费好几秒的时间。这也是为什么需要在步骤 1 先做判断,确保 seconds_behind_master 的值足够小。
当然,系统的不可用时间,是由这个数据可靠性优先的策略决定的。你也可以选择可用性优先的策略,来把这个不可用时间几乎降为 0。
可用性优先策略
如果我强行把步骤 4、5 调整到最开始执行,也就是说不等主备数据同步,直接把连接切到备库 B,并且让备库 B 可以读写,那么系统几乎就没有不可用时间了。
我们把这个切换流程,暂时称作可用性优先流程。这个切换流程的代价,就是可能出现数据不一致的情况。
接下来,我就和你分享一个可用性优先流程产生数据不一致的例子。假设有一个表 t:
1 | mysql> CREATE TABLE `t` ( |
这个表定义了一个自增主键 id,初始化数据后,主库和备库上都是 3 行数据。接下来,业务人员要继续在表 t 上执行两条插入语句的命令,依次是:
1 | insert into t(c) values(4); |
假设,现在主库上其他的数据表有大量的更新,导致主备延迟达到 5 秒。在插入一条 c=4 的语句后,发起了主备切换。
图 3 是可用性优先策略,且 binlog_format=mixed 时的切换流程和数据结果。
现在,我们一起分析下这个切换流程:
- 步骤 2 中,主库 A 执行完 insert 语句,插入了一行数据(4,4),之后开始进行主备切换。
- 步骤 3 中,由于主备之间有 5 秒的延迟,所以备库 B 还没来得及应用“插入 c=4”这个中转日志,就开始接收客户端“插入 c=5”的命令。
- 步骤 4 中,备库 B 插入了一行数据(4,5),并且把这个 binlog 发给主库 A。
- 步骤 5 中,备库 B 执行“插入 c=4”这个中转日志,插入了一行数据(5,4)。而直接在备库 B 执行的“插入 c=5”这个语句,传到主库 A,就插入了一行新数据(5,5)。
最后的结果就是,主库 A 和备库 B 上出现了两行不一致的数据。可以看到,这个数据不一致,是由可用性优先流程导致的。
那么,如果我还是用可用性优先策略,但设置 binlog_format=row,情况又会怎样呢?因为 row 格式在记录 binlog 的时候,会记录新插入的行的所有字段值,所以最后只会有一行不一致。而且,两边的主备同步的应用线程会报错 duplicate key error 并停止。
也就是说,这种情况下,备库 B 的 (5,4) 和主库 A 的 (5,5) 这两行数据,都不会被对方执行。
从上面的分析中,你可以看到一些结论:
使用 row 格式的 binlog 时,数据不一致的问题更容易被发现。而使用 mixed 或者 statement 格式的 binlog 时,数据很可能悄悄地就不一致了。如果你过了很久才发现数据不一致的问题,很可能这时的数据不一致已经不可查,或者连带造成了更多的数据逻辑不一致。
主备切换的可用性优先策略会导致数据不一致。因此,大多数情况下,我都建议你使用可靠性优先策略。毕竟对数据服务来说的话,数据的可靠性一般还是要优于可用性的。
GTID
相比于一主一备的切换流程,A切换到A’一主多从结构在切换完成后,A’会成为新的主库,从库 B、C、D 也要改接到 A’。正是由于多了从库 B、C、D 重新指向的这个过程,所以主备切换的复杂性也相应增加了。
基于位点的主备切换
需要执行一条 change master 命令:
1 | CHANGE MASTER TO |
后两个参数 MASTER_LOG_FILE 和 MASTER_LOG_POS 表示,要从主库的 master_log_name 文件的 master_log_pos 这个位置的日志继续同步。而这个位置就是我们所说的同步位点,也就是主库对应的文件名和日志偏移量。
这两个值通过从新主库获取一般不精确,可能出现重复操作一个语句造成主键冲突,所以需要跳过冲突,会造成风险。
通过 sql_slave_skip_counter 跳过事务和通过 slave_skip_errors 忽略错误的方法,虽然都最终可以建立从库 B 和新主库 A’的主备关系,但这两种操作都很复杂,而且容易出错。所以,MySQL 5.6 版本引入了 GTID,彻底解决了这个困难。
GTID 的全称是 Global Transaction Identifier,也就是全局事务 ID,是一个事务在提交的时候生成的,是这个事务的唯一标识。它由两部分组成,格式是:
1 | GTID=server_uuid:gno |
其中:
server_uuid 是一个实例第一次启动时自动生成的,是一个全局唯一的值;
gno 是一个整数,初始值是 1,每次提交事务的时候分配给这个事务,并加 1。
这里我需要和你说明一下,在 MySQL 的官方文档里,GTID 格式是这么定义的:
1 | GTID=source_id:transaction_id |
这里的 source_id 就是 server_uuid;而后面的这个 transaction_id,我觉得容易造成误导,所以我改成了 gno。为什么说使用 transaction_id 容易造成误解呢?
因为,在 MySQL 里面我们说 transaction_id 就是指事务 id,事务 id 是在事务执行过程中分配的,如果这个事务回滚了,事务 id 也会递增,而 gno 是在事务提交的时候才会分配。
从效果上看,GTID 往往是连续的,因此我们用 gno 来表示更容易理解。
GTID 模式的启动也很简单,我们只需要在启动一个 MySQL 实例的时候,加上参数 gtid_mode=on 和 enforce_gtid_consistency=on 就可以了。
在 GTID 模式下,每个事务都会跟一个 GTID 一一对应。这个 GTID 有两种生成方式,而使用哪种方式取决于 session 变量 gtid_next 的值。
- 如果 gtid_next=automatic,代表使用默认值。
这时,MySQL 就会把 server_uuid:gno 分配给这个事务。
a. 记录 binlog 的时候,先记录一行 SET @@SESSION.GTID_NEXT=‘server_uuid:gno’;
b. 把这个 GTID 加入本实例的 GTID 集合。
如果 gtid_next 是一个指定的 GTID 的值,比如通过 set gtid_next=’current_gtid’指定为 current_gtid,那么就有两种可能:
a. 如果 current_gtid 已经存在于实例的 GTID 集合中,接下来执行的这个事务会直接被系统忽略;
b. 如果 current_gtid 没有存在于实例的 GTID 集合中,就将这个 current_gtid 分配给接下来要执行的事务,也就是说系统不需要给这个事务生成新的 GTID,因此 gno 也不用加 1。
注意,一个 current_gtid 只能给一个事务使用。这个事务提交后,如果要执行下一个事务,就要执行 set 命令,把 gtid_next 设置成另外一个 gtid 或者 automatic。
这样,每个 MySQL 实例都维护了一个 GTID 集合,用来对应“这个实例执行过的所有事务”。
基于 GTID 的主备切换
在 GTID 模式下,备库 B 要设置为新主库 A’的从库的语法如下:
1 | CHANGE MASTER TO |
其中,master_auto_position=1 就表示这个主备关系使用的是 GTID 协议。可以看到,前面让我们头疼不已的 MASTER_LOG_FILE 和 MASTER_LOG_POS 参数,已经不需要指定了。
我们把现在这个时刻,实例 A’的 GTID 集合记为 set_a,实例 B 的 GTID 集合记为 set_b。接下来,我们就看看现在的主备切换逻辑。
我们在实例 B 上执行 start slave 命令,取 binlog 的逻辑是这样的:
实例 B 指定主库 A’,基于主备协议建立连接。
实例 B 把 set_b 发给主库 A’。
实例 A’算出 set_a 与 set_b 的差集,也就是所有存在于 set_a,但是不存在于 set_b 的 GTID 的集合,判断 A’本地是否包含了这个差集需要的所有 binlog 事务。
a. 如果不包含,表示 A’已经把实例 B 需要的 binlog 给删掉了,直接返回错误;
b. 如果确认全部包含,A’从自己的 binlog 文件里面,找出第一个不在 set_b 的事务,发给 B;
之后就从这个事务开始,往后读文件,按顺序取 binlog 发给 B 去执行。
其实,这个逻辑里面包含了一个设计思想:在基于 GTID 的主备关系里,系统认为只要建立主备关系,就必须保证主库发给备库的日志是完整的。因此,如果实例 B 需要的日志已经不存在,A’就拒绝把日志发给 B。
这跟基于位点的主备协议不同。基于位点的协议,是由备库决定的,备库指定哪个位点,主库就发哪个位点,不做日志的完整性判断。
基于上面的介绍,我们再来看看引入 GTID 后,一主多从的切换场景下,主备切换是如何实现的。
由于不需要找位点了,所以从库 B、C、D 只需要分别执行 change master 命令指向实例 A’即可。
其实,严谨地说,主备切换不是不需要找位点了,而是找位点这个工作,在实例 A’内部就已经自动完成了。但由于这个工作是自动的,所以对 HA 系统的开发人员来说,非常友好。